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Abstract

We explain the bundle structures of tBbeterminant line bundl@nd theQuillen determinant
line bundleconsidered on the connected component of the space of Fredholm operators including
the identity operator in an intrinsic way. Then we show that these two are isomorphic and that they
are non-trivial line bundles and trivial on some subspaces. Also we remark a relatior(afitles
determinant line bundland theMaslov line bundle
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1. Introduction

The Fredholm determinant is defined for the class of the operators of the form “Id
trace class operator” on a Hilbert spadeas the extension of the finite dimensional cases
with respect to the trace norm:

detr(Id + K) = 1‘[(1 + X)), (1.1)

where); are eigenvalues of the trace class oper&tdisee[5] for analytic properties of
the Fredholm determinant). This quantity gives uS*avalued holomorphic one cocycle
on the space of Fredholm operators Bnwhose Fredholm indexes are zero. In fact, let
F = F(H) be the space of Fredholm operators defined on a Hilbert sacel we denote
by 7o = Fo(H) the connected component &{ H) consisting of the operators with the
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index zero. LefZ; be the space of trace class operatorgfori-or each trace class operator
A € I;, we denote by/4 an open subset ofy consisting of such operatofsthatT + A is

an isomorphism of{. ThenZg is covered by open subs€igs}4c7,. Let A and B be two
trace class operators, and ' Uy NUp C Fo, then the function$ga (1)} 4, Bezy:

ga.5(T) = dete(ld + (A — B)(T + B) "} = dete (T + A)(T + B) 1)
are holomorphic od{4 N Up, and they satisfy the cocycle condition:
ga.c(D) = ga s(Dgpc(T) (1.2)

forT € UsNUNUc. We denote by » the complex line bundle defined by these transition
functions{ga, g} 4, pez, and call it as the Determinant line bundle
The disjoint unions of finite dimensional vector spaces:

I K d II CokenT
. er() an . oken(T)

do not have vector bundle structures. When we consider them on a compactsubget
it can be seen that the formal difference of these two is an element &f-t@up K (X)
by approximatingeach of these two with suitable vector bundles which are constructed by
a standard method.

On the other hand, the disjoint union of the lines:

dimKer(T) dim CokexT)
Ker(T)* ® A CokenT)
TeFo

has a complex line bundle structure on the whole spgcand is called as th@uillen
determinant line bundleThis fact is stated in the papgrl] and it is treated in various
contexts [2,9,10,13]Jand others).

In this note, we give a rigorous proof of this fact by giving an intrinsic correspondence
between the Determinant line bundle and the Quillen determiaation 3, and prove that
itis non-trivial onFo (Section 3. In Section 4ve show it is trivial on each compact subset of
the subspacg, (=the non-trivial connected componentin the space of selfadjoint Fredholm
operators). Of course it is trivial on the each subspace of essentially positive and essentially
negative Fredholm operators]?-‘i). Finally in Section 5we prove that the induced bundle
of the Quillen determinant line bundle on the spacErefiholm Lagrangian Grassmannian
by a naturally defined map is trivial and remark a relation withNteeslov line bundle

2. Fredholm determinant and the Quillen deter minant

Let T be a Fredholm operator on a (complex)Hilbert spHc&Ve denote bydr a subset
of the space of trace class operatdrsuch that

Ar = {A € T1|T + Aisinvertible
and letDr be a space of complex valued functions4nsatisfying the following condition:

Dr = {f : Ar — C|f(B) = dete{(T + A)(T + B)~"1} f(A)}.
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Of course this is an one-dimensional vector space, and the union;

I
TeFo(H)

becomes a holomorphic complex line bundle with local trivializations:

a1 Dr—Us xC,  ja:Dr> fr> (T, (A) €Us x C, (2.1)
€UA

whereA € 7; andUdy = {T € Fo(H)|T + Aisinvertiblg. By the definition of the function
spaceDr, the transition function ot (" Up is given by

detz{(T + ANT + B4,
so that the space

o Dy
TeFo(H)

is a realization of th®eterminant line bundlé/Ne denote it byC r.

For a fixedT € Fp, we denote byry : H — H the orthogonal projection operator onto
the KenT) and by the natural projectiopr : H — CokenT).

Let L be a linear mag. : Ker(T' ) — H satisfying the condition:

The compositiopy o L : Ker(T ) — CokerT ) isanisomorphism (2.2)

Then under this condition for the operatbwe know that the operatd + L o 77 is an
isomorphism or.

Let {e;}¢_, be a basis of K&T ) and{e}}¢_, the dual basisd = dim KerT). Then we
define a map

dim Ker(T) dim CokeKT)
o7 : Dr — A Ker(T)*® A Cokern(7T) (2.3)

by
or(f) = f(A) - detr{(T + AT + L o)™
xel A ANey® pr(Le)) A--- A pr(L(eq)), (2.4)
where we fixed amt € Ar. By the relation
f(A) detr (T + AX(T + L o rp) 1} dete{(T + BY(T + Lony) H™h
= f(A) det={(T + AT + B)" Y} = £(B),

it will be clear of the independence of the definition of this map from the choige®fA
and the mapy is an isomorphism. Moreover we have the following proposition.

Proposition 2.1. The definition of the magp; depends neither on the choice of the map L
satisfying the conditio2.2) above nor on the choice of the basjs;} of Ker(T').

Proof. Again it would be clear of the independence from the choice of a basis ¢fKer
So we only prove the independence from the choice of the opetator
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Let L’ be another such operatbf : Ker(T ) — H thatpr o L' : Ker(T) — CokerT)
is isomorphic, then we have

pr(L'(ep)) =Y aijpr(L(e:)

and
T+Lony=T+L onxyronKernT)>.
Hence
(T+Lonp) Yo(T+L ony)—Id
is a finite rank operator, and moreover we have
dete{(T + L owr) Lo (T + L' o 7)) = detlaj).
This relation gives us

f(A) - dete{(T + AT + Lomr) Yes A+ A€l ® pr(Len) A+ A pr(L(eq))
= f(A) - dete{(T + AT + L omr) s A- - Ae @ pr(L'(en) A+

Apr(L'(eq)), (2.5)
which proves the independence of the definition of the ghafsom the choice of the linear
mapL. O

By this proposition we can introduce (the topology and) the local trivialization of the
space:

dim Ker(T) dim CokeKT)
A Ker(T)Y*® A Coker(T)
Tely

through the local trivializatiof2.1) and the magy:

—1 ~ dim Ker(T) dim CokelT)
O ¢r)oj, Uy xC— 1 A Ker(T)Y*® A CokenT). (2.6)
Teldy Telp
Then
dimKer(T) dim CokerT)
A Ker(T)Y*® A CokernT)
TeFo

becomes a complex line bundle which is isomorphic to the Determinant line byipdle
This is the Quillen determinant line bundlend we denote it by .

3. Non-triviality of the Quillen determinant

Theorem 3.1. The bundleC, is not trivial on the whole spacg&p.
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Proof. For a compact Hausdorff spagewe know by the famous theoref] that the re-
ducedK -groupK (X) is isomorphic to the space of homotopy classésfo] of continuous
mapsf : X — Fo and the correspondence is given by constructing two vector bufdles
and F on X which satisfy the following exact sequence at each poiatX:

0 — Ker(f(x)) - E;y — Fy — Coken f(x)) — 0. (3.1)

The homotopy class of the magpcorresponds to the elemer][— [F] € K(X).

Hence we havef*(Lo) = AIMEE* @ A9MFE and so for any line bundlé on a
compact spac& the elementf] — [¢1] € K(X) (¢!: one-dimensional trivial line bundle)
corresponds to a continuous map X — Fo, we havel™ = g*(Lp). Hence we know by
taking a suitable compact spa&ewith H2(X, Z) # {0} that £, cannot be trivial on the
whole spaceFo(H). O

4. A triviality of the Quillen determinant

Although we have proved that the Quillen determinant line bundle is not trivial on the
whole spaceFy, it might be trivial on a subspace iy (H). For example, itis trivial on the
space of essentially positive (negative) Fredholm operaﬁafé_to.

Now let F, be the non-trivial connected component of the selfadjoint Fredholm operators.
Then we have the following theorem.

Theorem 4.1. On each compact subset in the spagethe Quillen determinanty is
trivial .

Proof. Let X be a compact Hausdorff space andfdte a continuous mayg, : X — Fi.
It is enough to show that* (L) is trivial. Let £2Fg be the path space consisting of paths

connecting Id and-Id. Let« : F, — £2Fg be a continuous map given by
a(A)(T) =cos(wt) + sin(r) - A € 2Fy, te]0,1]. (4.1)

This is a homotopy equivalence (388).
Now let S(X) be the suspension &f, then we have a continuous map : S(X) — Fo
defined by

hy(t, x) = a(fO))(T).

LetC: X — S(X) be a map defined &&x) = (1/2, x) € S(X), then by the definition of
the suspension we have

hfoC=iof

wherei is the inclusion map : F — Fo. Sinceig(S(X)) = ind-lim, . [ X, GL(n, C)],
we know that the induced map : K(S(X)) — K(X) is trivial. Hence the induced line
bundle(iy o C)*(Lg) = f*(Lp) must be trivial. O
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5. Quillen determinant on the Fredholm Lagrangian Grassmannian

In this section, we show that the Quillen determinant is trivial, when it is pull-backed on
the Fredholm Lagrangian Grassmannidhrough an embedding.

First we describe the Fredholm Lagrangian Grassmannian. Séf le¢re be a real
symplectic Hilbert space. The symplectic form is non-degenerate in such a sense that
H x H — R defines the continuous isomorphissf:

o H — H*, a)#(x)(y) = w(x,y). (5.1)

We do not change the symplectic forsronce it has been introduced on a real Hilbert space
H, but rather freely we can replace the inner product with a new one whose defining norm is
equivalent to that defined by the original inner product. Especially, we can assume from the
beginning that the symplectic form is expressed in the form(x, y) = (J(x), y), where
J is an almost complex structure with the property théik), J(y)) = (x, y),'J = —J,'J
is the transpose operator with respect to the (Euclidean) inner produyct

Let A be a Lagrangian subspace:

A=A°={x € Hlw(x,y) = 0foranyy € 1} (5.2)

and denote byFA; (H) the space of such Lagrangian subspaeetat the pair(u, A)
is a Fredholm pair (sef] for a general theory of Fredholm pairs afAd for particular
properties of Fredholm pairs of Lagrangian subspaces), that is:

@) dm®x N up) < +oo,
(i) A+ wis aclosed and finite codimensional subspacH in

We call this space as thé&fedholm Lagrangian Grassmanniarmhe topology is naturally
defined by embedding it into the space of bounded oper&oky on H by the map
P . FA,(H) — B(H), P(u) is the orthogonal projection operator onto the spaamnd
FA; (H) becomes aninfinite dimensional smooth manifold. Itis known that the fundamental
groupm1(FA; (H)) is Z and the isomorphism is given by so called aslov indexfor
each loop.

When we regard the real Hilbert spatleas a complex Hilbert space by means of the
almost complex structuré with the Hermitian inner product:

(x,y) = (x,y) — V=1{J(x), y),

we denote it byH .
Each Lagrangian subspatealefines aeal structureon H;:

r®CSH)y, x®1+y® V-1 x+ J().

We denote byr, the complex conjugation with respect to a real structure given by a
Lagrangian subspace

n(x + J(y) = x = J(y). (5.3)

This is an anti-linear involution ol = H; and ZP(A) — Id = 1;.
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Let u € FA, (H), then the operator
—Tu 0Ty
is a unitary operatoe U(H ) with the property that
ld—rt,01y
is a Fredholm operator. We denote the correspondgnee —t,, o 7 by
Syt FALH) — Ur(H)), (5.4)

wherel/r(Hy) is a space of unitary operatotson H; such thatU + Id is a Fredholm
operator.

We call the mas, the Souriau mag4,8,12]which satisfiesS (1)* = S,, (). We know
that through this map the fundamental groups of the Fredholm Lagrangian Grassmannian
and the spaclr(H;) are isomorphic.

Let us denote by; the map:

@ 1 FAL(H) — Fo(Hy), @ (w) =1d — 7401 =1d + S (w).
Theorem 5.1. The pull backy; (L) is trivial.

Proof. For the proof it is enough to notice the basic facts relating with the Souriau map
and Fredholm pairs of Lagrangian subspddeg).
Foru € FA, (H) let p, () be

pi(w) = P(wh) + POD),
then it is a positive Fredholm operator. That is, we have a map:

i FAL(H) — Fi(H). (5.5)
Then,

Ker(p,(uw)) = AN p
and

Coker(p; (1) = H/ G- + pt) Z 2/ G + ph)).
Also we know

Ker(ga(w)) =Ker(ld + S, (w) =rNpu+Januw=anu) @C
and since Infgy (1)) = AN AN )~ + J NN p)b):

Cokerg(n)) = Hy/(.N (AN )™+ J0.N (N ™))

= (/NG + ) eC.

So the fiber of the induced bundj¢ (L) by the mapsy; is the complexification of that
by the mapp;,, hence the bundlg; (L) is trivial, since the Quillen determinant is trivial

on the subspac&, (H) C ¥, (H ® C). O
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Corallary 5.2. The disjoint union

dima

N . dim H/ (A +ut)
A AN ® A

H kl 1
e, /(A +p)

has a bundle structure as a line bundle on the Fredholm Lagrangian Grassmafnig(H)
and is a trivial line bundle
Note that we do not have a particular trivialization on the whole spagcg, (H).

Remark 5.3. For any Fredholm paif), ) of Lagrangian subspaces:

diminp =dimH/ G + pt) = dim H/ (L + p).

Now letd be a Lagrangian subspace whid@iriost coincideswith A:
dimi/(ANO) =dimo(r No) < oo.

This relation is an equivalence relation among Lagrangian subspaces and we denote it by
A ~ 6. Thenforsuchapait, 6), A ~ 6, the Fredholm Lagrangian Grassmannian coincides
with each other:

FA(H) = FAq(H).

For a Lagrangian subspaéglet us denote an open subsetfiy(H):

{uw € FAg(H)|uN 6 = {0}}

by ]-'Aéo)(H). Then this space is isomorphic to the space of (real) bounded selfadjoint
operators o and we have an open covering:

FanH) = FAP (H).

O~x

On each open subsé?tAéo)(H) (® ~ A), we have a trivialization of the induced bundle

g5 (L) given by the trivializatiorf2.6)oni/ s, with atrace class operatdy = —ld+1yot;
(infact this is a finite rank operator). Also there is atrivializatiorri@méo)(H) coming from
the trivialization on an open subgép 1) _p;1) N F(H) C F(H ® C) through the map
p». Here again the operat@(6+) — P(A1) : H — H, is a finite rank operator. For such
two 6 andé @ ~ E)), the transition function on the intersectidméo)(l—l) N ]—'Aéo)(H) is
given by the function through the magp:

detr{(tg — 7) (75 — 7)1 = detr ((PO) — P(w)(PO) — P(n)) ™) (5.6)
and that through the magp, is
detr {(PE) + P(uH))(PE) + P(u) . (5.7)

Now we show these two functions coincideﬁméo)(H) N ]—'A(go)(H).
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Proposition 5.4. Let® andd “almost coincidg then fory € FASY (H) N FAS (H) we
have
det={(P(®) — P(w)(P@) — P(w) ™1} (5.8)
= detr{(P(O) — P(w™)(PED) — P(u') ™Y (5.9)

= detr{(P(6) + P())(P@) + P()) ™)
= detr {(P(O) + P(ut))(PE) + P(ut) 1. (5.10)

Proof. SinceP(x) = Id — P(x1) for any Lagrangian subspagewe have
(P(O) — PG))(PO) — P(w)) ™ = (P(O) — P(u)(PO) — P(u) .
This gives the first equalit{5.9).
Next we prove the coincidence of the first te(®8) and the third tern{5.10) then we
know all the term coincide.
From the equality:
(P(©O) — PG)(PO) — P(w) - (PO) — PG))(P®O) + P(w)
= (PO) — P(W)(P®) + P(w) ™" - (P6) + P(w)(P®) + P(w)) "

we have
(P©6) — P())(P(@) — P(u))
= (PB) — P()(P®) + P(w) "L - (P@) — P(1))(P©)
+P) "L (PO) — P(w)(PO) + P(w) "L - (P©O) + P())(PO) + P(u)) L
-(P©®) + P()(P©®) — P(u) .

When we express the Lagrangian subsghcen + J(i) = H as the graph of an operator
Ty 1w — J(w), the operatotP(6) — P(n))(P®) + P(r)) L is expressed in the following
form:

PO — P)PO + Py [ 7 r—>(_|d O>< " ) X,y €
a S 3% —1, 1d)\uy ) VIR
Hence we see that the operator:
(PO) — P(w)(P®) + P(w)) - (PO) — P(u)(P@) + P(u)

is of the form:

Id 0
Ty — Ty Id/)°

When#d andd almost coincide, then this operator is of the form 4dinite rank operator”,
sinceTy — Ty is a finite rank operator. Moreover we have

det Id 0 _1
Thy—T; d)
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Finally, together with an invariance of the Fredholm determinant with respect to conjuga-
tions we have

detr {(P©@) — P()(P®) + P(w))
A(PO) + P()(P@) + P(w) "L - (P@) + P())(P®) — P()) ™1}
= detr {(P(6) + P())(PO@) + P()) "1},

which proves the desired result. O

Remark 5.5. Althoughwe know the triviality of the line bundig (L), there are no natural
global trivializations. TheMaslov line bundleon FA, (we do not define this here, but is
defined in a similar way as for the finite dimensional case|&¢és also a trivial line bundle

just by its definition for which the transition functions are given by the infinite dimensional
analog of theHdrmander indexelgl]. So itis interesting to give an isomorphism of these two

line bundles on a particular subspace in the Fredholm Lagrangian Grassmannian in terms
of a certain geometric and/or analytic data, which will give us a relation of the Fredholm
determinant and the Maslov index.
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