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Abstract

We explain the bundle structures of theDeterminant line bundleand theQuillen determinant
line bundleconsidered on the connected component of the space of Fredholm operators including
the identity operator in an intrinsic way. Then we show that these two are isomorphic and that they
are non-trivial line bundles and trivial on some subspaces. Also we remark a relation of theQuillen
determinant line bundleand theMaslov line bundle.
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1. Introduction

The Fredholm determinant is defined for the class of the operators of the form “Id+
trace class operator” on a Hilbert spaceH as the extension of the finite dimensional cases
with respect to the trace norm:

detF (Id + K) =
∏

(1 + λi), (1.1)

whereλi are eigenvalues of the trace class operatorK (see[5] for analytic properties of
the Fredholm determinant). This quantity gives us aC

∗-valued holomorphic one cocycle
on the space of Fredholm operators onH whose Fredholm indexes are zero. In fact, let
F = F(H) be the space of Fredholm operators defined on a Hilbert spaceH and we denote
by F0 = F0(H) the connected component ofF(H) consisting of the operators with the
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index zero. LetI1 be the space of trace class operators onH . For each trace class operator
A ∈ I1, we denote byUA an open subset ofF0 consisting of such operatorsT thatT +A is
an isomorphism ofH . ThenF0 is covered by open subsets{UA}A∈I1. Let A andB be two
trace class operators, and letT ∈ UA ∩ UB ⊂ F0, then the functions{gA,B(T)}A,B∈I1:

gA,B(T) = detF {Id + (A − B)(T + B)−1} = detF {(T + A)(T + B)−1}
are holomorphic onUA ∩ UB, and they satisfy the cocycle condition:

gA,C(T) = gA,B(T)gB,C(T ) (1.2)

for T ∈ UA ∩UB ∩UC. We denote byLF the complex line bundle defined by these transition
functions{gA,B}A,B∈I1 and call it as the “Determinant line bundle”.

The disjoint unions of finite dimensional vector spaces:



T∈F0

Ker(T) and 

T∈F0

Coker(T )

do not have vector bundle structures. When we consider them on a compact subsetX inF0,
it can be seen that the formal difference of these two is an element of theK-groupK(X)

by approximatingeach of these two with suitable vector bundles which are constructed by
a standard method.

On the other hand, the disjoint union of the lines:



T∈F0

dim Ker(T )∧ Ker(T )∗ ⊗ dim Coker(T )∧ Coker(T )

has a complex line bundle structure on the whole spaceF0 and is called as theQuillen
determinant line bundle. This fact is stated in the paper[11] and it is treated in various
contexts ([2,9,10,13]and others).

In this note, we give a rigorous proof of this fact by giving an intrinsic correspondence
between the Determinant line bundle and the Quillen determinant (Section 2), and prove that
it is non-trivial onF0 (Section 3). In Section 4we show it is trivial on each compact subset of
the subspacêF∗ (=the non-trivial connected component in the space of selfadjoint Fredholm
operators). Of course it is trivial on the each subspace of essentially positive and essentially
negative Fredholm operators (=F̂±). Finally inSection 5we prove that the induced bundle
of the Quillen determinant line bundle on the space ofFredholm Lagrangian Grassmannian
by a naturally defined map is trivial and remark a relation with theMaslov line bundle.

2. Fredholm determinant and the Quillen determinant

Let T be a Fredholm operator on a (complex)Hilbert spaceH . We denote byAT a subset
of the space of trace class operatorsI1 such that

AT = {A ∈ I1|T + A is invertible}
and letDT be a space of complex valued functions onAT satisfying the following condition:

DT = {f : AT → C|f(B) = detF {(T + A)(T + B)−1}f(A)}.
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Of course this is an one-dimensional vector space, and the union:



T∈F0(H)

DT

becomes a holomorphic complex line bundle with local trivializations:

jA : 

T∈UA

DT
∼−→UA × C, jA : DT � f �→ (T, f(A)) ∈ UA × C, (2.1)

whereA ∈ I1 andUA = {T ∈ F0(H)|T +A is invertible}. By the definition of the function
spaceDT , the transition function onUA

⋂
UB is given by

detF {(T + A)(T + B)−1},
so that the space



T∈F0(H)

DT

is a realization of theDeterminant line bundle. We denote it byLF .
For a fixedT ∈ F0, we denote byπT : H → H the orthogonal projection operator onto

the Ker(T ) and byρT the natural projectionρT : H → Coker(T ).
Let L be a linear mapL : Ker(T ) → H satisfying the condition:

The compositionρT ◦ L : Ker(T ) → Coker(T ) is an isomorphism. (2.2)

Then under this condition for the operatorL we know that the operatorT + L ◦ πT is an
isomorphism onH .

Let {ei}d
i=1 be a basis of Ker(T ) and{e∗

i }d
i=1 the dual basis (d = dim KerT ). Then we

define a map

φT : DT → dim Ker(T )∧ Ker(T )∗ ⊗ dim Coker(T )∧ Coker(T ) (2.3)

by

φT (f) = f(A) · detF {(T + A)(T + L ◦ πT )−1}
× e∗

1 ∧ · · · ∧ e∗
d ⊗ ρT (L(e1)) ∧ · · · ∧ ρT (L(ed)), (2.4)

where we fixed anA ∈ AT . By the relation

f(A) detF {(T + A)(T + L ◦ πT )−1} detF {((T + B)(T + L ◦ πT )−1)−1}
= f(A) detF {(T + A)(T + B)−1} = f(B),

it will be clear of the independence of the definition of this map from the choice ofA ∈ AT

and the mapφT is an isomorphism. Moreover we have the following proposition.

Proposition 2.1. The definition of the mapφT depends neither on the choice of the map L
satisfying the condition(2.2)above, nor on the choice of the basis{ei} of Ker(T ).

Proof. Again it would be clear of the independence from the choice of a basis of Ker(T ).
So we only prove the independence from the choice of the operatorL.
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Let L′ be another such operatorL′ : Ker(T ) → H thatρT ◦ L′ : Ker(T ) → Coker(T )

is isomorphic, then we have

ρT (L′(ej)) =
∑

i

aij ρT (L(ei))

and

T + L ◦ πT = T + L′ ◦ πT on Ker(T )⊥.

Hence

(T + L ◦ πT )−1 ◦ (T + L′ ◦ πT ) − Id

is a finite rank operator, and moreover we have

detF {(T + L ◦ πT )−1 ◦ (T + L′ ◦ πT )} = det(aij ).

This relation gives us

f(A) · detF {(T + A)(T + L ◦ πT )−1}e∗
1 ∧ · · · ∧ e∗

d ⊗ ρT (L(e1)) ∧ · · · ∧ ρT (L(ed))

= f(A) · detF {(T + A)(T + L′ ◦ πT )−1}e∗
1 ∧ · · · ∧ e∗

d ⊗ ρT (L′(e1)) ∧ · · ·
∧ρT (L′(ed)), (2.5)

which proves the independence of the definition of the mapφT from the choice of the linear
mapL. �

By this proposition we can introduce (the topology and) the local trivialization of the
space:



T∈UA

dim Ker(T )∧ Ker(T )∗ ⊗ dim Coker(T )∧ Coker(T )

through the local trivialization(2.1)and the mapφT :(



T∈UA

φT

)
◦ j−1

A : UA × C
∼−→ 


T∈UA

dim Ker(T )∧ Ker(T )∗ ⊗ dim Coker(T )∧ Coker(T ). (2.6)

Then



T∈F0

dim Ker(T )∧ Ker(T )∗ ⊗ dim Coker(T )∧ Coker(T )

becomes a complex line bundle which is isomorphic to the Determinant line bundleLF .
This is the “Quillen determinant line bundle” and we denote it byLQ.

3. Non-triviality of the Quillen determinant

Theorem 3.1. The bundleLQ is not trivial on the whole spaceF0.
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Proof. For a compact Hausdorff spaceX we know by the famous theorem[1] that the re-
ducedK-groupK̃(X) is isomorphic to the space of homotopy classes [X,F0] of continuous
mapsf : X → F0 and the correspondence is given by constructing two vector bundlesE

andF onX which satisfy the following exact sequence at each pointx ∈ X:

0 → Ker(f(x)) → Ex → Fx → Coker(f(x)) → 0. (3.1)

The homotopy class of the mapf corresponds to the element [E] − [F ] ∈ K(X).
Hence we havef ∗(LQ) ∼= ∧dimEE∗ ⊗ ∧dimF F , and so for any line bundle� on a

compact spaceX the element [�] − [ε1] ∈ K̃(X) (ε1: one-dimensional trivial line bundle)
corresponds to a continuous mapg : X → F0, we have�∗ ∼= g∗(LQ). Hence we know by
taking a suitable compact spaceX with H2(X, Z) �= {0} thatLQ cannot be trivial on the
whole spaceF0(H). �

4. A triviality of the Quillen determinant

Although we have proved that the Quillen determinant line bundle is not trivial on the
whole spaceF0, it might be trivial on a subspace inF0(H). For example, it is trivial on the
space of essentially positive (negative) Fredholm operators (=F̂±).

Now letF̂∗ be the non-trivial connected component of the selfadjoint Fredholm operators.
Then we have the following theorem.

Theorem 4.1. On each compact subset in the spaceF̂∗ the Quillen determinantLQ is
trivial .

Proof. Let X be a compact Hausdorff space and letf be a continuous map,f : X → F̂∗.
It is enough to show thatf ∗(LQ) is trivial. Let ΩF0 be the path space consisting of paths
connecting Id and−Id. Let α : F̂∗ → ΩF0 be a continuous map given by

α(A)(T ) = cos(π t) + sin(πt) · A ∈ ΩF0, t ∈ [0, 1]. (4.1)

This is a homotopy equivalence (see[3]).
Now let S(X) be the suspension ofX, then we have a continuous maphf : S(X) → F0

defined by

hf (t, x) = α(f(x))(T ).

Let C : X → S(X) be a map defined asC(x) = (1/2, x) ∈ S(X), then by the definition of
the suspension we have

hf ◦ C = i ◦ f,

wherei is the inclusion mapi : F̂∗ ↪→ F0. SinceK̃(S(X)) = ind-limn→∞[X, GL(n, C)],
we know that the induced mapC∗ : K̃(S(X)) → K̃(X) is trivial. Hence the induced line
bundle(hf ◦ C)∗(LQ) = f ∗(LQ) must be trivial. �
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5. Quillen determinant on the Fredholm Lagrangian Grassmannian

In this section, we show that the Quillen determinant is trivial, when it is pull-backed on
theFredholm Lagrangian Grassmannianthrough an embedding.

First we describe the Fredholm Lagrangian Grassmannian. So, letH here be a real
symplectic Hilbert space. The symplectic form is non-degenerate in such a sense thatω :
H × H → R defines the continuous isomorphismω#:

ω# : H → H∗, ω#(x)(y) = ω(x, y). (5.1)

We do not change the symplectic formω once it has been introduced on a real Hilbert space
H , but rather freely we can replace the inner product with a new one whose defining norm is
equivalent to that defined by the original inner product. Especially, we can assume from the
beginning that the symplectic formω is expressed in the formω(x, y) = 〈J(x), y〉, where
J is an almost complex structure with the property that〈J(x), J(y)〉 = 〈x, y〉, tJ = −J , tJ

is the transpose operator with respect to the (Euclidean) inner product〈·, ·〉.
Let λ be a Lagrangian subspace:

λ = λ◦ = {x ∈ H |ω(x, y) = 0 for anyy ∈ λ} (5.2)

and denote byFΛλ(H) the space of such Lagrangian subspacesµ that the pair(µ, λ)

is a Fredholm pair (see[7] for a general theory of Fredholm pairs and[4] for particular
properties of Fredholm pairs of Lagrangian subspaces), that is:

(i) dim(λ ∩ µ) < +∞,
(ii) λ + µ is a closed and finite codimensional subspace inH .

We call this space as the “Fredholm Lagrangian Grassmannian”. The topology is naturally
defined by embedding it into the space of bounded operatorsB(H) on H by the map
P : FΛλ(H) → B(H), P(µ) is the orthogonal projection operator onto the spaceµ and
FΛλ(H) becomes an infinite dimensional smooth manifold. It is known that the fundamental
groupπ1(FΛλ(H)) is Z and the isomorphism is given by so called theMaslov indexfor
each loop.

When we regard the real Hilbert spaceH as a complex Hilbert space by means of the
almost complex structureJ with the Hermitian inner product:

(x, y) = 〈x, y〉 − √−1〈J(x), y〉,
we denote it byHJ .

Each Lagrangian subspaceλ defines areal structureonHJ :

λ ⊗ C
∼−→HJ , x ⊗ 1 + y ⊗ √−1 �→ x + J(y).

We denote byτλ the complex conjugation with respect to a real structure given by a
Lagrangian subspaceλ:

τλ(x + J(y)) = x − J(y). (5.3)

This is an anti-linear involution onH = HJ and 2P(λ) − Id = τλ.
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Let µ ∈ FΛλ(H), then the operator

−τµ ◦ τλ

is a unitary operator∈ U(HJ ) with the property that

Id − τµ ◦ τλ

is a Fredholm operator. We denote the correspondenceµ �→ −τµ ◦ τλ by

Sλ : FΛλ(H) → UF (HJ ), (5.4)

whereUF (HJ ) is a space of unitary operatorsU on HJ such thatU + Id is a Fredholm
operator.

We call the mapSλ theSouriau map[4,8,12]which satisfiesSλ(µ)∗ = Sµ(λ). We know
that through this map the fundamental groups of the Fredholm Lagrangian Grassmannian
and the spaceUF (HJ ) are isomorphic.

Let us denote byqλ the map:

qλ : FΛλ(H) → F0(HJ ), qλ(µ) = Id − τµ ◦ τλ = Id + Sλ(µ).

Theorem 5.1. The pull backq∗
λ(LQ) is trivial.

Proof. For the proof it is enough to notice the basic facts relating with the Souriau map
and Fredholm pairs of Lagrangian subspaces[4,8].

For µ ∈ FΛλ(H) let pλ(µ) be

pλ(µ) = P(µ⊥) + P(λ⊥),

then it is a positive Fredholm operator. That is, we have a map:

pλ : FΛλ(H) → F̂+(H). (5.5)

Then,

Ker(pλ(µ)) = λ ∩ µ

and

Coker(pλ(µ)) = H/(λ⊥ + µ⊥) ∼= λ/(λ ∩ (λ⊥ + µ⊥)).

Also we know

Ker(qλ(µ)) = Ker(Id + Sλ(µ)) = λ ∩ µ + J(λ ∩ µ) ∼= (λ ∩ µ) ⊗ C

and since Im(qλ(µ)) = λ ∩ (λ ∩ µ)⊥ + J(λ ∩ (λ ∩ µ)⊥):

Coker(qλ(µ)) = HJ /(λ ∩ (λ ∩ µ)⊥ + J(λ ∩ (λ ∩ µ)⊥))

∼= (λ/(λ ∩ (λ⊥ + µ⊥))) ⊗ C.

So the fiber of the induced bundleq∗
λ(LQ) by the mapsqλ is the complexification of that

by the mappλ, hence the bundleq∗
λ(LQ) is trivial, since the Quillen determinant is trivial

on the subspacêF+(H) ⊂ F̂+(H ⊗ C). �
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Corollary 5.2. The disjoint union



µ∈FΛλ

dimλ∩µ∧ (λ ∩ µ)∗ ⊗ dimH/(λ⊥+µ⊥)∧ H/(λ⊥ + µ⊥)

has a bundle structure as a line bundle on the Fredholm Lagrangian GrassmannianFΛλ(H)

and is a trivial line bundle.
Note that we do not have a particular trivialization on the whole spaceFΛλ(H).

Remark 5.3. For any Fredholm pair(λ, µ) of Lagrangian subspaces:

dimλ ∩ µ = dimH/(λ⊥ + µ⊥) = dimH/(λ + µ).

Now let θ be a Lagrangian subspace which “almost coincides” with λ:

dimλ/(λ ∩ θ) = dim θ(λ ∩ θ) < ∞.

This relation is an equivalence relation among Lagrangian subspaces and we denote it by
λ ∼ θ. Then for such a pair(λ, θ), λ ∼ θ, the Fredholm Lagrangian Grassmannian coincides
with each other:

FΛλ(H) = FΛθ(H).

For a Lagrangian subspaceθ, let us denote an open subset inFΛθ(H):

{µ ∈ FΛθ(H)|µ ∩ θ = {0}}

by FΛ
(0)
θ (H). Then this space is isomorphic to the space of (real) bounded selfadjoint

operators onθ and we have an open covering:

FΛλ(H) =
⋃
θ∼λ

FΛ
(0)
θ (H).

On each open subsetFΛ
(0)
θ (H) (θ ∼ λ), we have a trivialization of the induced bundle

q∗
λ(LQ) given by the trivialization(2.6)onUAθ

with a trace class operatorAθ = −Id+τθ◦τλ

(in fact this is a finite rank operator). Also there is a trivialization onFΛ
(0)
θ (H) coming from

the trivialization on an open subsetUP(θ⊥)−P(λ⊥) ∩ F(H) ⊂ F(H ⊗ C) through the map
pλ. Here again the operatorP(θ⊥) − P(λ⊥) : H → H , is a finite rank operator. For such
two θ and θ̃ (θ ∼ θ̃), the transition function on the intersectionFΛ

(0)
θ (H) ∩ FΛ

(0)

θ̃
(H) is

given by the function through the mapqλ:

detF {(τθ − τµ)(τ
θ̃
− τµ)−1} = detF {(P(θ) − P(µ))(P(θ̃) − P(µ))−1} (5.6)

and that through the mappλ is

detF {(P(θ⊥) + P(µ⊥))(P(θ̃⊥) + P(µ⊥))−1}. (5.7)

Now we show these two functions coincide onFΛ
(0)
θ (H) ∩ FΛ

(0)

θ̃
(H).
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Proposition 5.4. Let θ and θ̃ “almost coincide”, then forµ ∈ FΛ
(0)
θ (H) ∩ FΛ

(0)

θ̃
(H) we

have

detF {(P(θ) − P(µ))(P(θ̃) − P(µ))−1} (5.8)

= detF {(P(θ⊥) − P(µ⊥))(P(θ̃⊥) − P(µ⊥))−1} (5.9)

= detF {(P(θ) + P(µ))(P(θ̃) + P(µ))−1}
= detF {(P(θ⊥) + P(µ⊥))(P(θ̃⊥) + P(µ⊥))−1}. (5.10)

Proof. SinceP(x) = Id − P(x⊥) for any Lagrangian subspacex, we have

(P(θ) − P(µ))(P(θ̃) − P(µ))−1 = (P(θ⊥) − P(µ⊥))(P(θ̃⊥) − P(µ⊥))−1.

This gives the first equality(5.9).
Next we prove the coincidence of the first term(5.8)and the third term(5.10), then we

know all the term coincide.
From the equality:

(P(θ) − P(µ))(P(θ̃) − P(µ))−1 · (P(θ̃) − P(µ))(P(θ̃) + P(µ))−1

= (P(θ) − P(µ))(P(θ) + P(µ))−1 · (P(θ) + P(µ))(P(θ̃) + P(µ))−1

we have

(P(θ) − P(µ))(P(θ̃) − P(µ))−1

= (P(θ) − P(µ))(P(θ) + P(µ))−1 · (P(θ̃) − P(µ))(P(θ̃)

+P(µ))−1 · (P(θ̃) − P(µ))(P(θ̃) + P(µ))−1 · (P(θ) + P(µ))(P(θ̃) + P(µ))−1

· (P(θ̃) + P(µ))(P(θ̃) − P(µ))−1.

When we express the Lagrangian subspaceθ ⊂ µ + J(µ) = H as the graph of an operator
Tθ : µ → J(µ), the operator(P(θ) −P(µ))(P(θ) +P(µ))−1 is expressed in the following
form:

(P(θ) − P(µ))(P(θ) + P(µ))−1 :

(
x

J(y)

)
�→
( −Id 0

−Tθ Id

)(
x

J(y)

)
, x, y ∈ µ.

Hence we see that the operator:

(P(θ) − P(µ))(P(θ) + P(µ))−1 · (P(θ̃) − P(µ))(P(θ̃) + P(µ))−1

is of the form:(
Id 0

Tθ − T
θ̃

Id

)
.

Whenθ andθ̃ almost coincide, then this operator is of the form “Id+ finite rank operator”,
sinceTθ − T

θ̃
is a finite rank operator. Moreover we have

detF

(
Id 0

Tθ − T
θ̃

Id

)
= 1.
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Finally, together with an invariance of the Fredholm determinant with respect to conjuga-
tions we have

detF {(P(θ̃) − P(µ))(P(θ̃) + P(µ))−1

· (P(θ) + P(µ))(P(θ̃) + P(µ))−1 · (P(θ̃) + P(µ))(P(θ̃) − P(µ))−1}
= detF {(P(θ) + P(µ))(P(θ̃) + P(µ))−1},

which proves the desired result. �

Remark 5.5. Although we know the triviality of the line bundleq∗
λ(LQ), there are no natural

global trivializations. TheMaslov line bundleonFΛλ (we do not define this here, but is
defined in a similar way as for the finite dimensional case, see[6]) is also a trivial line bundle
just by its definition for which the transition functions are given by the infinite dimensional
analog of theHörmander indexes[4]. So it is interesting to give an isomorphism of these two
line bundles on a particular subspace in the Fredholm Lagrangian Grassmannian in terms
of a certain geometric and/or analytic data, which will give us a relation of the Fredholm
determinant and the Maslov index.
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